skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Vasudevan, Dilip"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. When extremely low-energy processing is required, the choice of data representation makes a tremendous difference. Each representation (e.g., frequency domain, residue coded, and log-scale) embodies a different set of tradeoffs based on the algebraic operations that are either easy or hard to perform in that domain. We demonstrate the potential of a novel form of encoding, race logic, in which information is represented as the delay in the arrival of a signal. Under this encoding, the ways in which signal delays interact and interfere with one another define the operation of the system. Observations of the relative delays (for example, the outcome of races between signals) define the output of the computation. Interestingly, completely standard hardware logic elements can be repurposed to this end and the resulting embedded systems have the potential to be extremely energy efficient. To realize this potential in a practical design, we demonstrate two different approaches to the creation of programmable tree-based ensemble classifiers in an extended set of race logic primitives; we explore the trade-offs inherent to their operation across sensor, hardware architecture, and algorithm; and we compare the resulting designs against traditional state-of-the-art hardware techniques. 
    more » « less